PHARMACOKINETICS OF SSRI ANTIDEPRESSANTS

Alphonse Poklis, Ph.D., ABFT
Professor, Pathology
Pharmacology & Toxicology
Chemistry & Forensic Science
School of Medicine
Virginia Commonwealth University
Richmond, VA 23298-0165
Selective Serotonin Reuptake Inhibitors (SSRI)

- Citalopram (Celexa, Cipramil, Seropram)
 - Escitalopram (Lexapro)
- Duloxetine (Cymbalta)
- Fluoxetine (Prozac)
- Fluvoxamine (Luvox)
- Paroxetine (Paxil)
- Sertraline (Zoloft)
- Venlafaxine (Effexor)
The Bluebird of Happiness long absent from his life, Ned is visited by the Chicken of Depression.
<table>
<thead>
<tr>
<th>Drug</th>
<th># Cases</th>
<th>% Case</th>
<th>Mode</th>
<th>Range</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Alcohol</td>
<td>2230</td>
<td>76.3</td>
<td>0.12</td>
<td>0.01 - 0.40</td>
<td>gm %</td>
</tr>
<tr>
<td>THC</td>
<td>345</td>
<td>12.0</td>
<td>0.001</td>
<td><0.001 - 0.026</td>
<td>mg/L</td>
</tr>
<tr>
<td>THC-Acid</td>
<td>442</td>
<td>15.0</td>
<td>0.024</td>
<td>0.002 - 0.280</td>
<td>mg/L</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>108</td>
<td>3.7</td>
<td>0.038</td>
<td>0.020 - 0.672</td>
<td>mg/L</td>
</tr>
<tr>
<td>Diazepam</td>
<td>79</td>
<td>2.7</td>
<td>0.39</td>
<td>0.020 - 1.70</td>
<td>mg/L</td>
</tr>
<tr>
<td>Nordiazepam</td>
<td>91</td>
<td>3.1</td>
<td>0.16</td>
<td>0.050 - 2.10</td>
<td>mg/L</td>
</tr>
<tr>
<td>Cocaine</td>
<td>31</td>
<td>1.1</td>
<td>0.005</td>
<td>0.002 - 0.071</td>
<td>mg/L</td>
</tr>
<tr>
<td>Benzoylecgonine</td>
<td>79</td>
<td>2.7</td>
<td>0.16</td>
<td><0.100 - 3.2</td>
<td>mg/L</td>
</tr>
<tr>
<td>Butalbital</td>
<td>71</td>
<td>2.4</td>
<td>1.0</td>
<td>0.500 - 38.9</td>
<td>mg/L</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>44</td>
<td>1.5</td>
<td>0.020</td>
<td>0.020 - 202</td>
<td>mg/L</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>40</td>
<td>1.4</td>
<td>0.067</td>
<td>0.024 - >0.500</td>
<td>mg/L</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>36</td>
<td>1.2</td>
<td>0.020</td>
<td>1.0 - 30.0</td>
<td>mg/L</td>
</tr>
<tr>
<td>Meprobamate</td>
<td>38</td>
<td>1.3</td>
<td>0.020</td>
<td>2.1 - 50.0</td>
<td>mg/L</td>
</tr>
<tr>
<td>Phencyclidine [PCP]</td>
<td>37</td>
<td>1.3</td>
<td>0.017</td>
<td>0.013 - 0.089</td>
<td>mg/L</td>
</tr>
<tr>
<td>Morphine</td>
<td>32</td>
<td>1.1</td>
<td>0.030</td>
<td>0.020 - >0.500</td>
<td>mg/L</td>
</tr>
</tbody>
</table>
Trazodone/Olanzapine/Paroxetine in Blood Extract – DB-5
Toxicology Findings, 43 yr Woman:

<table>
<thead>
<tr>
<th>Drug</th>
<th>blood, mg/L</th>
<th>Liver, mg/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocodone</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>1.2</td>
<td>12</td>
</tr>
<tr>
<td>Bupropion</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>0.7</td>
<td>40</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>0.6</td>
<td>26</td>
</tr>
<tr>
<td>Nortriptyline</td>
<td>1.4</td>
<td>36</td>
</tr>
<tr>
<td>Quetiapine</td>
<td><.1</td>
<td>4</td>
</tr>
<tr>
<td>Promethazine</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>Diazepam</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Nordiazepam</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Doxylamine</td>
<td>0.09</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Antidepressant Drugs: Pharmacokinetic Consideration

- Large Apparent volume of distribution
- Chiral drugs
- Active metabolites
- Biotransformation
 - Interactions with CYP450 isoenzymes
Dosage → Plasma Concentration → Site of Action → Effects

Pharmacokinetics

Pharmacodynamics
ABSORPTION → Free Drug → EXCRETION

Bound Drug ↔ Free Drug

BIOTRANSFORMATION

SYSTEMIC CIRCULATION

LOCUS OF ACTION
“RECEPTORS”
Bound ↔ Free

TISSUE RESERVOIRS
Free ↔ Bound
LOCUS OF ACTION
“RECEPTORS”
Bound ↔ Free

TISSUE RESERVOIRS
Free ↔ Bound

ABSORPTION

Free Drug

Bound Drug

EXCRETION

BIOTRANSFORMATION

SYSTEMIC CIRCULATION

K_A

K_M

K_E
Pharmacokinetic Data

- Bioavailability (%)
- Volume of distribution (L/Kg)
- Bound in plasma (%)
- Distribution Ratio of [plasma]/[blood]
- Plasma half-life (hr)
- Clearance (mL/min/Kg)
- Urinary excretion (%)
Pharmacokinetic Data

- Single dose peak plasma concentration
- Effective steady state plasma concentration
- Toxic plasma concentration
- Life threatening or lethal blood concentration
Bioavailability

Dose → Destroyed in gut → Not absorbed → Destroyed by gut wall → Destroyed by liver → to systemic circulation
Bioavailability

Definition: the fraction of the administered dose reaching the systemic circulation

for i.v.: 100%
for non i.v.: ranges from 0 to 100%

e.g. lidocaine bioavailability 35% due to destruction in gastric acid and liver metabolism

First Pass Effect
Bioavailability = \frac{(AUC) \text{ Oral}}{(AUC) \text{ IV}}
Drugs appear to distribute in the body as if it were a single compartment. The magnitude of the drug’s distribution is given by the apparent volume of distribution (V_d).

$$V_d = \frac{\text{Amount of drug in body}}{\text{Concentration in Plasma}}$$

$$V_d = \frac{\text{Dose}}{C_0}$$
Drug concentration in beaker:

Dose = 10 mg
Cp₀ = 20 mg/L
Apparent Volume = 500 ml

With charcoal in beaker:

Dose = 10 mg
Cp₀ = 2 mg/L
Apparent Volume = 5000 ml
Gradient Between Drug in Blood and Drug in Other Tissues & Fluids

Vd = 1 L/Kg, in 70 Kg man = 70L
If 70mg dose, then $\frac{70mg}{70L/Kg} = 1 \text{ mg/L in blood}$

Distribution

Total drug in blood/total drug in body tissues = $4mg/66mg$

Vd = 10 L/Kg, in 70 Kg man = 700L
If 70mg dose, then $\frac{70mg}{700L/Kg} = 0.1 \text{ mg/L in blood}$

Distribution

Total drug in blood/total drug body tissues = $0.4mg/69.6mg$
Examples of apparent Vd’s for some drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>L/Kg</th>
<th>L/70 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfisoxazole</td>
<td>0.16</td>
<td>11.2</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>0.63</td>
<td>44.1</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>0.55</td>
<td>38.5</td>
</tr>
<tr>
<td>Diazepam</td>
<td>2.4</td>
<td>168</td>
</tr>
<tr>
<td>Digoxin</td>
<td>7</td>
<td>490</td>
</tr>
</tbody>
</table>
Hemodialysis

- Rate of toxicant removal related to:
 - Blood flow through dialyzer
 - Dialysate flow rate
 - Drug solubility
 - Permeability of membranes, surface >2M²

- Disadvantages:
 - Infections
 - Blood clots, hematomas
 - Complex apparatus, skill personnel
Dialysis Clearance

- **Dialysis clearance** $= E \times B \times S$
- **Where**
 - $E = \text{extraction ratio} = \frac{C_a - C_v}{C_a}$
 - Where; C_a is concentration of toxicant in arterial blood
 - C_v is concentration of toxicant in venous blood
 - $B = \text{blood flow} (300 \text{ mL/min})$
 - $S = \text{serum factor} (1 - \text{hematocrit})$
Hemodialysis Pharmacokinetics

- Dialyzer flow rate, 300 mL/min
- If Extraction ratio = 1, to totally clear blood (5000 mL) of agent where;
 - \(Ke = \frac{300 \text{ mL/min}}{5000 \text{ mL}} \)
 - \(Ke = 0.06/\text{min} \) (~6%)
 - \(T_{1/2} = \frac{0.0693}{0.06/\text{min}} = 11.6 \text{ min} \)
 - Total removal = 5 x \(T_{1/2} = 58 \text{ min} \)
Hemodialysis Pharmacokinetics
Clearance of Methanol

- Dialyzer flow rate, 300 mL/min
- If Extraction ratio = 1, to totally clear blood (5000 mL) of agent where;
 - Vd = 0.6L/Kg, 70Kg man
 - Ke = 300 mL/min /42000 mL
 - Ke = 0.007/min (~0.7%)
 - T1/2 = 0.0693 / 0.007/ min = 99min
 - Total removal = 5 x T1/2 = 495 min (~8 hours)
Hemodialysis Pharmacokinetics
Clearance of Phenytoin

- Dialyzer flow rate, 300 mL/min
- If Extraction ratio = 1, to totally clear blood (5000 mL) of agent where;
 - $V_d = 0.8 \text{L/Kg}$, 70Kg man
 - $K_e = \frac{300 \text{ mL/min}}{56000 \text{ mL}}$
 - $K_e = 0.005/\text{min}$ (~0.5%)
 - $T_{1/2} = \frac{0.0693}{0.005/\text{min}} = 138\text{min}$
 - Total removal = $5 \times T_{1/2} = 690 \text{ min} (~11.5 \text{ hr})$
Hemodialysis Pharmacokinetics
Clearance of Amitriptyline

- Dialyzer flow rate, 300 mL/min
- If Extraction ratio = 1, to totally clear blood (5000 mL) of agent where;
 - $V_d = 10L/Kg, \text{70Kg man}$
 - $Ke = \frac{300 \text{ mL/min}}{700,000 \text{ mL (700L)}}$
 - $Ke = 0.0004/\text{min (}\sim 0.04\%\)$
 - $T_{1/2} = \frac{0.0693}{0.0004/ \text{min}} = 173\text{min (}\sim 2.9 \text{ hr}\)$
 - Total removal = 5 x $T_{1/2} = 866 \text{ min (}\sim 14.4 \text{ hr}\)$
Hemodialysis Pharmacokinetics

Clearance of Fluoxetine

- Dialyzer flow rate, 300 mL/min
- If Extraction ratio = 1, to totally clear blood (5000 mL) of agent where;
 - Vd = 30L/Kg, 70Kg man
 - Ke = 300 mL/min /2,100,000 mL (2,100L)
 - Ke = 0.00014/min (~0.014%)
 - T1/2 = 0.0693 / 0.00014/ min = 495min (~8.3 hr)
 - Total removal = 5 x T1/2 = 2,475 min (~41.25 hr)
LOCUS OF ACTION
“RECEPTORS”
Bound ↔ Free

TISSUE RESERVOIRS
Free ↔ Bound

IV injection

Free Drug

Bound Drug

K_E

K_M

SYSTEMIC CIRCULATION

BIOTRANSFORMATION

EXCRETION
First Order Elimination

dC/dt related C

\[\frac{dC}{dt} = -kC \]

\[C_t = C_0 \cdot e^{-K_E t} \]

\[\ln C_t = \ln C_0 - K_E t \]

\[\log C_t = \log C_0 - \frac{K_E t}{2.303} \]

\[y = b - mx \]
Plasma Concentration Profile after a Single I.V. Injection
First Order Elimination

\[
\log C_t = \log C_0 - K_e t / 2.303
\]
Plasma Elimination Rate Constant

K_E is the fraction of drug continuously removed from plasma (blood) per unit time (hr).

Thus; if $K_E = -0.25/\text{hr}$, the plasma drug concentration is continuously declining by ~25%
Plasma Elimination Rate Constant

\[K_E = \text{the sum of all rate processes that remove the drug from plasma.} \]

\[K_E = K_{M1} + K_{M2} + K_U + K_{\text{others}} \]

Where; \(K_{M1} = \text{rate of formation of metabolite 1} \)

\(K_{M2} = \text{rate of formation of metabolite 2} \)

\(K_U = \text{rate of urinary excretion} \)

\(K_{\text{others}} = \text{rate of other processes, ex sweat,} \)
Fluvoxamine Metabolism

Overmars et al European J Drug Pharmacok 8:269-280, 1983
Elimination of drugs from the body

KIDNEY
- filtration
- secretion
 (reabsorption)

LIVER
- metabolism
- secretion

LUNGS
- exhalation

OTHERS
- mother's milk
- sweat, saliva etc.
The **plasma half-life** is the *time* for the plasma concentration to decline to half the original concentration.

\[
\ln C_t = \ln C_0 - K_E t
\]

When: \(\ln C_t = \ln C_{t_{1/2}}\)

\[
\ln C_0 = \ln C_0
\]

\[
t = t_{1/2}
\]

\[
T_{1/2} = 0.693/K_E
\]
Plasma Half-Life

Log Plasma Concentration

Time

Cp

Cp/2

$C_p/2 = 4 \text{ hrs}$

t_1

$t_{1/2} = 4 \text{ hrs}$

t_2
First Order Elimination

- **Clearance**: volume of plasma cleared of drug per unit time.

\[
\text{Clearance} = \frac{\text{Rate of elimination}}{\text{Plasma concentration}}
\]
Rate of elimination = $K_E \times$ Amount in body
Rate of elimination = $CL \times [\text{Plasma}]

Therefore,

$$K_E \times \text{Dose} = CL \times [\text{plasma}]$$

$$K_E = \frac{CL}{V_d}$$

$$V_dK_E = CL$$

$$0.693 \frac{V_d}{t_{1/2}} = CL$$
Plasma Clearance

Clearance is used to determine iv infusion rates

\[C_{ss} \cdot CL = \text{dosing rate} \]

Example, lidocaine

\[CL = 11 \text{ mL/min/Kg}, \text{ in 70 Kg man } = 0.8 \text{ L/min/Kg} \]

\[C_{ss} = 3\text{mg/L} \]

Dosing rate = \(0.8\text{L/min/Kg} \times 3\text{mg/L} = 2.4 \text{ mg/min} \)
BOUND FREE

BOUND FREE

TOXIC RESERVOIRS

SYSTEMIC CIRCULATION

FREE DRUG

BIOTRANSFORMATION

EXCRETION

ABSORPTION

LOCUS OF ACTION

"RECEPTORS"

BOUND FREE

FREE BOUND

FREE Bound
Multiple dosing

- On continuous steady administration of a drug, plasma concentration will rise fast at first then more slowly and reach a plateau, where:

 - rate of administration = rate of elimination

 ie. steady state is reached.
Steady State Concentration
Steady State Plasma Concentrations

- Obtained after dosing for 5 half-lives
- After drug administration is stopped, requires 5 half-lives to decline to zero
Steady State Plasma Concentrations

<table>
<thead>
<tr>
<th>Dose</th>
<th>after dose</th>
<th>after 1 half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2nd</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>3rd</td>
<td>175</td>
<td>88</td>
</tr>
<tr>
<td>4th</td>
<td>188</td>
<td>94</td>
</tr>
<tr>
<td>5th</td>
<td>194</td>
<td>97</td>
</tr>
<tr>
<td>6th</td>
<td>197</td>
<td>98</td>
</tr>
</tbody>
</table>
$C_{ss} = \frac{F \text{ (dose)}}{V_d K_e T}$

$C_{ss} = 1.44 \frac{F \text{ (dose)} \ t_{1/2}}{V_d T}$

$C_{ss} =$ Plasma Steady State Concentration
$F =$ Bioavailability
$V_d =$ Volume of distribution
$K_e =$ Plasma elimination rate constant
$T =$ Dosage interval
$t_{1/2} =$ Plasma half-life
Pharmacokinetic parameters

- **Volume of distribution** \[V = \frac{\text{DOSE}}{C_0} \]

- **Plasma clearance** \[\text{Cl} = K_E \cdot V_d \]

- **plasma half-life** \[t_{1/2} = \frac{0.693}{K_E} \]

- **Bioavailability** \[\frac{(\text{AUC})_x}{(\text{AUC})_{iv}} \]
Variability in Drug Metabolism

Plasma Drug Concentration (mg/L) vs. Daily Dose (mg/kg)
Antidepressant Drugs: Metabolism Consideration

- The metabolism rate for antidepressants can vary due to cytochrome p450 isoenzymes.
- Genetic polymorphisms exist that may classify a person as a “poor metabolizer” of a given p450 enzyme. (i.e. CYP 2D6, CYP 2C19)
- Certain drugs may inhibit the production of a particular enzyme or may compete with an enzyme, thus making an individual a poor metabolizer.
Cytochrome P-450 Cycle

R-OH or epoxide → [P-450 (Fe$^{3+}$)] [RH]

O$_2$ = [P-450 (Fe$^{2+}$)] [RH]

H$_2$O → 2H$^+$

[e- via NADPH or NADH plus a reductase enzyme]

RH substrate → [P-450 (Fe$^{2+}$)] [RH]

O$_2$ → [P-450 (Fe$^{2+}$)] [RH]

[e- via NADPH plus a reductase enzyme]

O$_2$ → [P-450 (Fe$^{2+}$)] [RH]

R-OH or epoxide
Cytochrome P-450: Oxidative

- Structural diversity due to
 - Nonspecificity
 - Isozymes - multiple forms of an enzyme
- Enzymes are “inducible” by various chemicals
- Exposure increases the rate of enzyme production
Cytochrome P-450: Oxidative

- Isozymes differ in protein structure
 - Different amino acid sequences
 - Produce different 3-D structures
 - Drug bound to the protein portion

- Remember:
 - *All activated oxygen chemistry occurs at the iron center heme with oxygen transfer to the protein bound substrate*
Polymorphism in Clinical Pharmacology

- **Drug metabolism enzymes**
 - Cytochrome P450's (CYP)
 - NAD(p)H quinone oxidoreductase
 - N-acetyl transferase (NAT)
 - Thiopurine methyltransferase (TPMT)

- **Receptor proteins**
 - α_2-Adrenergic receptor
 - Dopamine D3-receptor
Genetic Polymorphism

- Structural variations of a gene (Allele)
 Mendelian inheritance
 - **Homozygous:** Two common or two variant alleles
 - **Heterozygous:** One common and one variant allele
 - **Recessive:** Must be homozygous to reveal phenotype
 - **Dominant:** Heterozygous genotype displays variant phenotype
Mechanisms of polymorphism

- Single nucleotide
 - Coding region
 - Non-coding region
 - Regulatory sequences
 - Intron
- Gene deletion, duplication
Cytochrome P450 Nomenclature

- CYP’s that have 40% or greater sequence homology are classified as the same family.
- Enzymes with 55% or greater sequence homology are classified in the same subfamily.
- CYP2D6 is the abbreviation for the CYP in family 2, subfamily D, gene product 6.
Nomenclature

Cytochrome P450 2D6 *4

Superfamily

Family

Subfamily

Isoenzyme

Allele Variant
Hepatic Cytochrome P450 Content

1A2: 18%
2A6: 5%
2B6: 1%
3A: 40%
2C: 24%
2D6: 3%
'E1: 9%
Cytochrome P450 Isoenzymes

- It has been reported that for drugs that undergo oxidative biotransformation
 - 50% metabolized by CYP 3A3/4
 - 30% metabolized by CYP 2D6
 - 10% metabolized by CYP 2C9/10
 - 4% metabolized by CYP 1A2
 - 2% metabolized by CYP 2C19
 - 2% metabolized by CYP 2E1
Cytochrome P450 2D6

- Polymorphism – none or have less than normal amounts
 - 5-10% of Caucasians – poor metabolizers
 - ~1% of Asian – poor metabolizers
- Many important hydroxylation reactions
 - antidepressants, antipsychotics, analgesics, & cardiovascular drugs
- 2D6 can be inhibited by drugs
 - Not necessary for drug to be substrate to inhibit P450
- Autoinhibition
<table>
<thead>
<tr>
<th>Substrates</th>
<th>Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSRI</td>
<td>SSRI</td>
</tr>
<tr>
<td>TCA’s</td>
<td>Clomipramine</td>
</tr>
<tr>
<td>Antipsychotics</td>
<td>Bupropion</td>
</tr>
<tr>
<td>Beta-Blockers</td>
<td>Cimetidine</td>
</tr>
<tr>
<td>Codeine</td>
<td>Chlorpromazine, Cocaine</td>
</tr>
<tr>
<td>Tramadol</td>
<td>Methadone, Doxorubicin</td>
</tr>
<tr>
<td>Dextromethophan</td>
<td>Haloperidol</td>
</tr>
<tr>
<td>Encainide</td>
<td>Quinidine</td>
</tr>
<tr>
<td>Flecainide</td>
<td></td>
</tr>
</tbody>
</table>
SSRI Inhibitors
Cytochrome P450 2D6

- Weak to Moderate Inhibitors
 - Citalopram
 - Duloxetine
 - Fluvoxamine
 - Sertraline
- Potent Inhibitors
 - Fluoxetine
 - Norfluoxetine
 - Paroxetine
Cytochrome P450 3A4

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesics</td>
<td>SSRIs</td>
</tr>
<tr>
<td>Antiarrhythmics</td>
<td>Cimetidine</td>
</tr>
<tr>
<td>Antidepressants-SSRIs</td>
<td>Diltiazem</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>Grapefruit juice</td>
</tr>
<tr>
<td>Calcium antagonists</td>
<td>Ketoconazole</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Verapamil</td>
</tr>
<tr>
<td>Lovastatin</td>
<td></td>
</tr>
<tr>
<td>Macrolide antibiotics</td>
<td></td>
</tr>
<tr>
<td>Omeprezole</td>
<td></td>
</tr>
</tbody>
</table>
Inducers of Cytochrome P450 3A4

- Barbiturates
- Carbamazepine
- Glucocorticoids
- Phenytoin
- Rifampin
- St. John’s wort
SSRI Inhibitors
Cytochrome P450 3A4

- **Weak Inhibitor**
 - Citalpram
 - Fluoxetine
 - Paroxetine
 - Sertraline

- **Potent Inhibitor**
 - Norfluoxetine
 - Fluvoxamine
Michaelis-Menten Kinetics

\[V = V_{\text{max}} \left(\frac{[S]}{[S] + K_m} \right) \]

- If \([S] \gg K_m\), \(V = V_{\text{max}}\)
- If \(K_m \gg [S]\), \(V = \text{constant} [S]\)
Reciprocal Michaelis-Menten

\[
\frac{1}{V} = \frac{1}{V_{\text{max}}} + \frac{K_m}{V_{\text{max}}} \times \frac{1}{[S]}
\]

- **Intercept on y-axis**: \(\frac{1}{V_{\text{max}}}\)
- **Slope**: \(\frac{K_m}{V_{\text{max}}}\)
- **Intercept on x-axis**: \(-\frac{1}{K_m}\)

Graph: The graph shows a line with the intercept on the y-axis at \(\frac{1}{V}\) and the intercept on the x-axis at \(-\frac{1}{K_m}\). The slope of the line is \(\frac{K_m}{V_{\text{max}}}\).
Competitive Enzyme Inhibition

\[
1/V = 1/V_{\text{max}} + \frac{K_m}{V_{\text{max}}} (1 + 1/K_1)(1/[S])
\]

Where, \(K_1\) is the dissociation constant of the enzyme-inhibitor complex

In the presence of an inhibitor, the slope increases by the factor \((1 + 1/K_1)\)

\(K_m\) is increased

\(V_{\text{max}}\) is unaltered
Competitive Enzyme Inhibition

1/V vs 1/[S]

Competitive inhibitor

No inhibitor present
Factors Complicating Interpretation of Postmortem Blood Concentrations

- Large individual variations in pharmacokinetic parameters in therapeutic situations
- Alterations in pharmacokinetics in overdose
 - Saturation of biotransformation & elimination
 - Non-equilibrium distribution
- “postmortem release” of tissue bound drugs into blood after death

Postmortem Blood to Calculate Dose

If V_d is low, then $V_d = \frac{Dose}{C_0}$

If V_d is high, then $C_b V_d$ does not $= Dose$
Selective Serotonin Reuptake Inhibitors (SSRI)

- Citalopram (Celexa, Cipramil, Seropram)
 - Escitalopram (Lexapro®)
- Duloxetine (Cymbalta)
- Fluoxetine (Prozac)
- Fluvoxamine (Luvox)
- Paroxetine (Paxil)
- Sertraline (Zoloft)
- Venlafaxine (Effexor)
Variability in Pharmacokinetics

![Graph showing variability in plasma drug concentration vs. daily dose](image-url)
SSRI Metabolism

- Inhibit metabolism of other drugs
- Autoinhibition:
 - inhibit their own metabolism
 - non-linear relationship between dose and blood concentration
 - increase blood half-life with increasing doses
SSRI’s That Exhibit Autoinhibition

- Fluoxetine & norfluoxetine
- Fluvoxamine
- Paroxetine
Citalopram
Citalopram

- Dosage: 20-60 mg/day
- Bioavailability: 80%
- Fb: 0.80
- Time to Peak: ~4 hr
- Vd: 12-16 L/kg
- $t_{\frac{1}{2}}$: 25-35 hr
- Time to Steady State: 6-7 days
Citalopram

- Biotransformation
 - Desmethycitalopram CYP3A4 / CYP2D6 / CYP 2C19
 - Didesmethycitalopram, CYP 2D6
- Active Metabolite:
 - Desmethycitalopram (25-50% of parent)
 - Didesmethycitalopram (10% of Parent)
- % excreted in urine:
 - citalopram 12%
 - desmethycitalopram 5%
Citalopram

- Very weak inhibitor
 - CYP 3A4
 - CYP 2B6
 - CYP 2C9
 - CYP 2D6
 - CYP 2C19

- Elderly, increased half-life
- Hepatic disease – little effect
- Renal disease – little effect
CITALOPRAM METABOLISM

desmethylcitalopram

N-didesmethylcitalopram
Citalopram & Quetiapine

Abundance

Alprapruline

Citalopram

Quetiapine Metabolite

Quetiapine
Citalopam & Others

- Isid
- Caffeine
- Norfluoxetine
- Tramadol
- O-Desmethylramadrol
- Nortriptyline
- Diazepam
- Citalopram
Citalopram Serum Values

- Single- and multiple-doses both produce linear and dose proportional effects within the 10-60 mg/day prescription.

- Therapeutic value
 - citalopram 50-100 ng/mL
 - desmethycitalopram 15-40 ng/mL

- Toxic Concentration > 1,000 (?)
Citalopram Isomers

- “S” and “R” isomers (racemic mixture)
- “S” isomer 2-4 times SSRI than “R”
Citalopram Enantiomers in Femoral Blood, 53 Postmortem Cases

- **Citalopram**
 - Mean S isomer 1.53 ug/mL, SD = 3.57
 - Mean R isomer 1.72 ug/mL, SD = 3.58
 - S/R = 0.67, SD 0.25

- **Desmethylcitalopram**
 - Mean S isomer 0.14 ug/mL, SD = 0.21
 - Mean R isomer 0.20 ug/mL, SD = 0.22
 - S/R = 0.68, SD 0.20

Holmgren et al J. Anal. Toxicol. 26:94-104, 2004
Escitalopram

- “S” isomer citalopram)
- 10 mg = 20-40 mg citalopram
Escitalopram CYP 450

- R & S isomers metabolized by same P450
- Substrate:
 - CYP 2C19
 - CYP 3A4
 - CYP 2C19
- Weak inhibitor:
 - CYP 2D6
Duloxetine
Duloxetine

- Dosage: 40-120 mg/day
- Bioavailability: 95%
- Fb: 95%
- Time to Peak: ~4 hr
- Vd: Mean 27 L/Kg (13-50 L/kg)
- $t_{1/2}$: 6-19 hr
- Time to Steady State: 3-5 days
Duloxetine Elimination

- Biotransformation
 - Extensive ring hydroxylation
 - O-Methylation
 - Glucuronide & sulfate conjugation
- Plasma metabolites as glucuronides:
 - 4-hydroxy-duloxetine
 - 5,6-hydroxy-duloxetine
 - 6-hydroxy-5-methoxy duloxetine
 - 4,6-dihydroxy-duloxetine
- Radioactivity excreted in urine: 72% in 13 days
- Radioactivity excreted in feces: 18% in 13 days
Duloxetine Metabolism

- **Substrate:**
 - CYP 2D6
 - CYP 1A2

- Bioavailability reduced by 1/3 in smokers

- Elderly, no significant change in half-life

- Moderate inhibitor
 - CYP 2D6
Duloxetine Plasma Metabolites

Lanz et al. Drug Metab. Dispos. 31:1142,2003

6-hydroxy Catechol

4,6-hydroxy

5-hydroxy-6-methoxy
Duloxetine Urine Metabolites

11 hydroxylated and hydroxy-methoxy metabolites
Excreted as glucuronide and sulfate conjugates

10 – 16%

13 – 21%
Duloxetine Serum Steady-State Trough Values

- Twelve healthy adult men
- Dose 20 mg bid
 - 12ng/mL (2 – 12ng/mL)
- Dose 30 mg bid
 - 20 ng/mL (10 – 48 ng/mL)
- Dose 40 mg bid
 - 30 ng/mL (12– 40 ng/mL)

Generally trough serum values > 5 ng/mL predicts sustained inhibition of 5-HT reuptake.

Fluoxetine
Fluoxetine

- Dosage: 20-80 mg/day
- Fb: 0.94
- Time to Peak: 6-8 hr
- Vd: 20-42 L/kg
- Time to Steady State: 1 week – month
- % excreted as parent in urine: <10%
Fluoxetine Stereoisomers

Similar SSRI activity
Norfluoxetine Stereoisomers

S >>>>> R in SSRI activity
FLUOXETINE METABOLISM

- Biotransformation to norfluoxetine is mediated by CYP 2D6
- 7% of population reduced CYP 2D6 activity
 - S isomer metabolized slower to norfluoxetine, results in higher Flu/norflu
 - R isomer normal rate
- At steady-state concentration of the 4 parent-metabolite isomers equal
- No pharmacological difference
Fluoxetine CYP 450

- **Substrate:**
 - CYP1A2
 - CYP 2B6
 - CYP 2C8/9
 - CYP 2C19
 - CYP 2D6
 - CYP 2E1
 - CYP 3A4
Fluoxetine CYP 450

- Moderate to severe inhibitor:
 - CYP 1A2
 - CYP 2B6
 - CYP 2C8/9
 - CYP 2C19
 - CYP 2D6
 - CYP 3A/4

- Norfluoxetine: Inhibitor of 3A3/4 (potent)
FLUOXETINE METABOLISM

Trifluoromethylphenol

Norfluoxetine
Fluoxetine / Norfluoxetine
Fluoxetine Half-life

- $t_{1/2}$: 24-72 hr (dose dependent)
 - short term doses 1-3 days
 - long term doses 4-6 days

- $t_{1/2}$: norfluoxetine (1st order)
 - short term doses 4-16 days
 - long term doses 4-16 days
FLUOXETINE METABOLISM

- Half-life increased with hepatic disease
- Half-life not influenced by
 - Decreased renal function
 - Elderly
 - Pediatric patients
Fluoxetine Serum Values

- Single 40 mg dose = 15-55 ng/mL
- 40 mg/day for one week
 - Fluoxetine 91 – 300 ng/mL
 - Norfluoxetine 72 – 260 ng/mL
- 40 mg/day for one month
 - Fluoxetine 47 – 470 ng/mL
 - Norfluoxetine 52 – 450 ng/mL
Fluoxetine Serum Values

- Large variation in peak and trough concentrations dependent upon
 - Dose
 - Dosage regiment
 - Co-administration of other drugs

- Therapeutic values
 - fluoxetine, ~100 - 500 ng/mL
 - norfluoxetine, ~100 - 450 ng/mL

- Toxic Concentrations
 - Fluoxetine >1,500 ng/mL (?)
Desipramine

- **Dosage:** 25-300 mg/day
- **Fb:** 0.95
- **Time to Peak:** 3-6 hr
- **Vd:** 22-59 L/kg
- **t \(\frac{1}{2} \):** 12-54 hr
- **Time to Steady State:** 2-8 days
DESIPRAMINE METABOLISM

iminodibenzyl

nordesipramine

CYP3A4

10-OH-desipramine

CYP2D6

2-OH-desipramine
Metabolism of Desipramine

- Mediated by CYP1A2, CYP3A4, CYP2C19
 - Desipramine \rightarrow 10-OH-Desipramine

- Mediated by CYP2D6
 - Desipramine \rightarrow 2-OH-Desipramine
Fluoxetine/Desipramine

- Chronic administration
 - 20 mg/day fluoxetine
 - 50 mg/day desipramine
- Desipramine plasma values increased 4X with concomitant fluoxetine
- Desipramine plasma values still elevated 3 weeks after fluoxetine discontinued
Fluvoxamine
Fluvoxamine

- **Dosage:** 100-200 mg/day
- **Fb:** 0.77
- **Time to Peak:** 2-8 hr
- **Vd:** 25 L/kg
- **$t_{1/2}$:** 8-24 hr (dose dependent >200mg)
- **Time to Steady State:** 2-4 days
Fluvoxamine Elimination

- Extensively biotransformed
 - Oxidation, deamination
 - N-O cleavage
 - N-acetylated
- % excreted as parent in urine: ~3%
- Therapeutic Concentration
 - ~200 ng/mL
- Toxic Concentration
 - >2,500 ng/mL (?)
Fluvoxamine CYP 450

- **Substrate:**
 - CYP1A2
 - CYP 2D6

- **Moderate to Severe Inhibitor:**
 - CYP 1A2
 - CYP 2B6
 - CYP 2C8/9
 - CYP 2C19
 - CYP 2D6
 - CYP 3A/4
Fluvoxamine Metabolism

Overmars et al European J Drug Pharmacok 8:269-280, 1983
Fluvoxamine Metabolism, cont.
Fluvoxamine / Meperidine / Trazodone
Fluvoxamine Serum Values

- Single dose 100 mg
 - Peak 31-87 ng/mL
- Therapeutic Concentration
 - ~200 ng/mL
- Toxic Concentration
 - >2,500 ng/mL (?)
Paroxetine
Paroxetine

- Dosage: 10-50 mg/day
- Fb: 0.95
- Time to Peak: 3-8 hr
- Vd: 5-28 L/kg
- Time to Steady State: ~ 1 week
Paroxetine Elimination

- CYP 2D6 Polymorphism
- Extensively biotransformed
 - ring oxidative cleavage
- $t_{1/2}$: 7-37 hr (dose dependent)
 - fast met, \sim 16 hr
 - slow met (7% population), \sim 41 hr
- Parent excreted in urine: <1%
Paroxetine & CYP 450

Substrate: **CYP2D6**

Moderate to serve Inhibitor

- CYP1A2
- CYP 2B6
- CYP 2C8/9
- CYP 2C19
- CYP 2D6
- CYP 3A/4
PAROXETINE METABOLISM
Paroxetine / Amitriptyline

- Paroxetine
- Amitriptyline
- Nortriptyline
- Alphaprodine
- Paroxetine
Paroxetine / Methadone

TIC: 6024.D

Abundance

Time-->
Paroxetine Serum Values

- Single 20 mg dose peak
 - 1 – 33 ng/mL
- 30mg/day, steady-state (15 subjects)*
 - Peak, average 62 ng/mL
 - Trough, average 31 ng/mL
- Toxic Concentration
 - >300 ng/mL (?)

Sertraline
Sertraline

- Dosage: 50-200 mg/day
- Fb: 0.99
- Time to Peak: 6-8 hr
- Vd: 70 L/kg
- Half-life:
 - Sertraline 22-36 hr
 - Norsertraline 60 –70 hr
- Time to Steady State: 4-6 days
Sertraline Elimination

- Biotransformed
 - N-dealkylation
 - Ring hydroxylation
- Active Metabolite: norsertraline (20% of parent)
- Metabolism decreased
 - Hepatic disease
 - Elderly patients
- % of parent excreted in urine: <0.2%
Sertraline & CYP450 Isozymes

- Moderate Inhibitor at high doses
 - CYP 2C19
 - CYP 3A3
 - CYP 3A4
 - CYP 2B6
 - CYP 2C19

- Weak Inhibitor
 - CYP 2C8/9
 - CYP 1A2
 - CYP 2D6
SERTRALINE METABOLISM

H -N-CH$_3$

\[\text{Norsertraline}\]

\[\text{CYP 3A4}\]

\[\text{Norsertraline}\]
Sertraline in Blood Extract DB-5

Abundance

Time -->

TIC: 6476.4

Istd
Phthalate
Sertraline
Norsertaline

10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50
Methadone / Sertraline in Blood Extract DB-5

Abundance

Time

Alphaprodine, IS
methadone
norsertraline
sertraline

TIC: 1507.D
Sertraline Serum Values

- **Single dose average peak**
 - 50 mg dose, ~10 ng/mL
 - 100 mg dose, 16 ng/mL
 - 200 mg dose, 56 ng/mL

- **Steady State average (range)**
 - 50 mg dose, 32 ng/mL (20 – 48)
 - 100 mg dose, 91 ng/mL (40 – 187)
 - 200 mg dose, 206 ng/mL (99 – 309)
Risperidone Metabolism

2-Hydroxyrisperidone

9-Hydroxyrisperidone
Risperidone Metabolism

9-HO-risperidone, equipotent
Risperidone Pharmacokinetics
CYP2D6 Polymorphism

- Plasma half-life
 - *Slow*
 - Risperidone ~20 hr
 - 9-HO-risperidone ~30 hr
 - *Fast*
 - Risperidone ~3 hr
 - 9-HO-risperidone ~21 hr
Sertraline & Risperidone

- Patients receiving 4 – 6mg/day, at 2 months average plasma concentration
 - Risperidone + 9-hydroxy risperidone
 - 53 +/- 12 ng/mL
- Sertraline added 50mg/day after 2 months
 - Risperidone + 9-hydroxy risperidone
 - 55 +/- 10 ng/mL
 - Sertraline range 22 – 43 ng/mL

Spina et al Ther Drug Monit 26:386, 2004
Venlafaxine
Venlafaxine

- **Dosage:** 75-225 mg/day
- **Fb:** 0.99
- **Time to Peak:** 2-4 hr
- **Vd:** 4-12 L/kg
- $t^{1/2}$: venlafaxine 3-7 hr
 - o-methyl metabolite 9-13 hr
- **Time to Steady State:** 1-3 days
Venlafaxine Elimination

- Biotransformed - polymorphism
 - N-dealkylation
 - O-dealkylation
- Active Metabolite: O-desmethylvenlafaxine
- % excreted in urine:
 - parent, 5%
 - O-methylvenlafaxine, 29-48%
 - N-didesmethylvenlafaxine, 6-19%
 - N-desmethylvenlafaxine, 0.2-8%
Venlafaxine CYP 450

- **Substrate:**
 - CYP 2C8/9
 - CYP 2C19
 - CYP 2D6
 - CYP 3A/4

- **Inhibitor:**
 - CYP 2B6
 - CYP 2D6
 - CYP 3A/4
VENLAFAXINE METABOLISM

N-desmethylvenlafaxine

O-desmethylvenlafaxine

N,N-didesmethylvenlafaxine
Venlafaxine & Metabolites

Venlafaxine
n-desmethylvenlafaxine
o-desmethylvenlafaxine
Met ?
diazepam
nordiazepam
Venlafaxine Steady-State Serum Value

- Steady state 150 mg/day, 50mg tid
 - venlafaxine, peak 194 ng/mL, SD 67 ng/mL
 - venlafaxine, trough 52 ng/mL, SD 38 ng/mL
 - O-desmethyl, peak 313 ng/mL, SD 118 ng/mL
 - O-desmethyl, trough 185 ng/mL, SD 67 ng/mL

- Steady state 150 mg/day, 75mg bid
 - venlafaxine, peak 189 ng/mL, SD 54 ng/mL
 - venlafaxine, trough 56 ng/mL, SD 31 ng/mL
 - O-desmethyl peak 308 ng/mL, SD 121 ng/mL
 - O-desmethyl, trough 194 ng/mL, SD 75 ng/mL

Venlafaxine Serum Value

- Single 50 mg dose average
 - venlafaxine, 70 ng/mL (2.2 hr)
 - O-desmethylvenlafaxine, 106 ng/mL (3.9 hr)

- Toxic concentrations
 - >5,000 ng/mL (?)

- Postmortem blood concentrations
 - Ave. 56 mg/L (6 – 89 mg/L)

R.C. Baselt, *Disposition Toxic Drugs & Chemicals in Man, 6ed, 2002*