Postmortem Alcohol Issues

Daniel S. Isenschmid, Ph.D., DABFT

Wayne County Medical Examiner’s Office

Detroit, Michigan
Ethanol is the most frequently assayed and one of the most common drugs detected in a postmortem forensic toxicology laboratory.
Ethanol by Manner of Death

<table>
<thead>
<tr>
<th>Manner</th>
<th>N Cases</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>1027</td>
<td>9.5 %</td>
</tr>
<tr>
<td>Suicide</td>
<td>139</td>
<td>23.0 %</td>
</tr>
<tr>
<td>Homicide</td>
<td>448</td>
<td>30.4 %</td>
</tr>
<tr>
<td>Accidents</td>
<td>334</td>
<td>27.5 %</td>
</tr>
<tr>
<td>Drivers</td>
<td>90</td>
<td>30.0%</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>74</td>
<td>37.8%</td>
</tr>
<tr>
<td>Pending Tox</td>
<td>1090</td>
<td>21.4 %</td>
</tr>
</tbody>
</table>

Data - WCMEO, 2002
Analysis is easy
Interpretation is complex
PM Blood?
PM synthesis and diffusion
Analysis

- Conway microdiffusion (non-specific)
 - dichromate + acid + ethanol → chromic

- Enzymatic (ADH)
 - NAD + ethanol ⇌ NADH + acetaldehyde
 - Trapping agent - (hydrazine / semicarbazide)

- Radiative Energy Attenuation (Abbott)
 - NADH + MTT ⇌ NAD + MT-Formazan (diaphorase)
 - MTT = Monotetrazolium dye
Gas Chromatograph - FID

- **Direct Injection**
 - sample diluted with ISTD
 - build up of non-volatile substances
 - increased maintenance, column replacement

- **Headspace Injection**
 - analysis of volatilized alcohols
 - less maintenance
 - can use aqueous calibrators if diluted x10
Specimens

- “Blood” - heart, femoral
- Urine
- Vitreous humor
- Bile
- Liver
- Brain
- CSF
- Gastric
Postmortem Changes

- **Postmortem Loss**
 - evaporation (headspace, temperature)
 - enzyme mediated oxidation
 - Microorganisms

- **Postmortem Synthesis**
 - Decomposition
 - Action of microorganism without decomposition
 - Postmortem absorption of alcohol from GI tract
Postmortem Loss

- **Evaporation**
 - loose specimen lids
 - improper storage (refrigerate or freeze)
 - small sample volume in large container
 - salting out from excess sodium fluoride
 » higher VP, lowers BAC by headspace analysis

- **Oxidation to acetaldehyde via O₂Hb / air**
 - 0.02 mg/dL/day at 4°C; 6 mg/dL/day at 37°C
 - not inhibited by sodium fluoride
Postmortem Loss

- Microbial action
 - microbes capable of using EtOH as a substrate for metabolism
 - aerobic metabolism (minimize headspace)
 - sodium fluoride inhibits most
 - generally avoided at refrigerated temp.

- Fill - Seal - Preserve - Refrigerate
Postmortem Synthesis

- **Species that produce ethanol**
 - 58 bacteria - E. coli
 - 17 yeasts - C. ablicans
 - 24 molds
 - Read Corry, J. Appl Bacteriology 44:1-56, 1978

- **Mechanism of microbial contamination**
 - Exogenous (skin breaks)
 - Endogenous (intestinal bacteria - penetration of intestinal walls to portal vein)
Factors in PM Ethanol Production

- Species of microorganism present
- Substrates available (glucose rich tissues)
 - Liver, Skeletal muscle, Lungs, Heart
 - Liver glycogen \rightarrow glucose postmortem
- Temperature of storage (before/after autopsy)
- Absence of sodium fluoride
PM Production - Findings

- All postmortem cases ~12%
 - Caplan and Levine, 1990

- Decomposed cases ~20%
 - Zumwalt et al., 1982; Gilliland and Bost, 1993
 - Most concentrations <0.07 g%

- Higher #'s have been reported in grossly decomposed, trauma cases

- Blood, no preservative, RT, 4 d, up to 0.15

- Urine, high glucose + yeast, RT 21 d, >1.0
PM Synthesis -v- AM Ingestion?

- Case history - if you're lucky
- Condition of the specimens - notate!
- Types of microorganisms present (?!)
- Atypical distribution of ethanol in multiple samples
- Presence in one specimen, not others
- Presence of other alcohols / volatiles
- Ethanol concentration
Distribution of Alcohol

- Once absorbed – distributed throughout the body
- Distribution in tissues – dependant on the water content of the tissue
Distribution of Alcohol

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Blood</td>
<td>1.00</td>
</tr>
<tr>
<td>Plasma</td>
<td>1.18</td>
</tr>
<tr>
<td>Urine</td>
<td>1.28</td>
</tr>
<tr>
<td>Bile</td>
<td>1.10</td>
</tr>
<tr>
<td>Vitreous Humor</td>
<td>1.27</td>
</tr>
<tr>
<td>Brain</td>
<td>0.85</td>
</tr>
<tr>
<td>Liver</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Atypical Distribution

- Often difficult to establish
- Must be postabsorptive
- Vitreous / Blood ratios vary considerably
 - Postabsorptive lags behind
 - Stomach <0.5 g% - postabsorptive (Backer, 1980)
 - mean 1.19 (stomach <0.5%) [0.86-1.72]
 - mean 0.89 (stomach >0.5%) [0.48-2.00]
 - mean 1.17 (postabsorptive with BAC >0.10%); [0.25-1.91], N=205, (Caplan and Levine, 1990).
Atypical Distribution

- Other variables
 - Decomposition - atypical distribution likely
 - Hematocrit (7-64%, Coe & Sherman, 1970)
 - Clotting, collapsed vessels
 - Rigor mortis, body position
 » postmortem blood movement
 - Gastric diffusion
 - Dilution (fluids)
Effect of Dilution (transfusions)

- Falsely lowered ethanol concentrations
 - Applies to blood and other fluids
- BAC can be estimated if volume known
- Based on total body water NOT blood
 - 150 lb. male (Vd = 0.66); 2 L fluid = 4.4 lb.
 - 2 L fluids results in 4.4 lb / 100 lb decrease
 - Dilution = 4.4% (Field, 1993)
- Effect magnified if not circulated
 - Vitreous humor may be useful
<table>
<thead>
<tr>
<th>(AM)</th>
<th>(PM)</th>
<th>(VH)</th>
<th>Fluids / Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.018</td>
<td>0.073</td>
<td>0.093</td>
<td>5.5 L / 1.75 h</td>
</tr>
<tr>
<td>0.120</td>
<td>0.230</td>
<td>0.210</td>
<td>1.7 L / 0.75 h</td>
</tr>
<tr>
<td>0.234</td>
<td>0.071</td>
<td>0.104</td>
<td>1.0 L / 2.5 h</td>
</tr>
<tr>
<td>0.141</td>
<td>0.091</td>
<td>NA</td>
<td>2.0 L / 4.25 h</td>
</tr>
</tbody>
</table>

(possible fluid infusion near time of death)
Presence in Different Matrices

- Negative urine, vitreous - positive blood
 - probably indicates PM synthesis
 - no vitreous glucose or microorganisms
 - protected from putrefaction and trauma
 - no urine ethanol production except, e.g. glucose + yeast

- Ethanol concentrations usually clinically insignificant
Paired Specimen Study

- **381 cases with BAC from 0.01-0.04 g%**

<table>
<thead>
<tr>
<th>BAC g%</th>
<th>Positive (VH or U)</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.01</td>
<td>54%</td>
</tr>
<tr>
<td>0.02</td>
<td>63%</td>
</tr>
<tr>
<td>0.03</td>
<td>73%</td>
</tr>
<tr>
<td>0.04</td>
<td>92%</td>
</tr>
</tbody>
</table>

- Levine et al., 1993
Postmortem Diffusion

- Requires recent ingestion of alcohol
- Stomach - diffusion and/or regurgitation
 - may affect pleural cavity, pericardial fluids, pulmonary vessels, cardiac blood
- Small intestine (upper)
 - may contaminate surrounding organs
- Trauma - especially stomach or diaphragm
But it’s not a big deal!

- “Most people do not die with a belly full of liquor.” (Sunshine, 1957)
- “Few cases with stomach alcohol concentrations greater than 5g/dL.” (Backer, 1980)
- “Avoid blind sticks” (Logan and Lindholm, 1995).
- Exceptions may exist - use vitreous humor
- Blood from two sources may be useful when the quality of the other sample is called into question
 - Femoral generally collected for drugs anyway
Heart -v- Peripheral Blood

- 68 paired fluoridated specimens; mean
- 74% within 10%; 91% within 20%
- 38% heart blood > peripheral blood
- 31% heart blood = peripheral blood
- 31% heart blood < peripheral blood
- Mean % difference <1.5% for all cases
- 4/6 that were >20% H/P was >1.0
 - all 4 had low P sample volumes incl. 1 absorbing

Isenschrom mid and Hepler, 1998 ToxTalk
Heart -v- Femoral Blood

- Prouty and Anderson, 1987
- 100 paired specimens
- Mean Heart / Femoral ratio 0.98
- 17 cases differed by >20%
 - 6 had H/F ration of >1.0
 - either absorptive or low femoral sample vol.
Putrefactive Products and Exogenous Artifacts

- Methanol, formaldehyde
 - (also form embalming)
- Isopropanol (especially drowning cases)
- Acetone (also starvation, ketoacidosis)
- Others - concentrations low
 - n-propranol (20x < blood), n-butanol, sec-butanol, isoamyl alcohol, isobutanol, acetaldehyde, ethyl ether, phenylethanols
Absorptive Phase

Pulmonary Circulation
- Pulmonary Vein
- Pulmonary Artery

Systemic Circulation
- Left Heart: LA, LV
- Right Heart: RA, RV
- Aorta
- Vena Cavae

Oxygenated
- Up to 40% higher

Deoxygenated
Absorptive State of Drivers

■ Levine & Smialek, 1999
 – Drivers dead within 15 minutes (n=129)
 – 11 U/B < 1.0, absorptive
 – 32 U/B 1.0 -1.2, plateau phase
 – 86 U/B >1.2, postabsorptive

■ WCEMO - absorptive, plateau - V/B often <1.0
 – U and V may be useful in absorptive state
Interpretation Guidelines
O’Neal and Poklis, 1996

- Case History
- Decomposed Cases
 - high EtOH in multiple matrices - probably AM
 - DO NOT extrapolate or interpret behavioral efx
- Multiple Specimens
 - Ethanol should be detected in all
 - Otherwise assume ethanol synthesis
 - (Urine, blood clots - example of exceptions)
Interpretation Guidelines
O’Neal and Poklis, 1996

- Internal Standard - use t-butanol
- Specimen container
 - Preserve with at least 1% sodium fluoride
 - Volume should fill container
 - Tight screw-cap lid
- Blood only cases
 - Consider BAC < or = to 0.03 g% NEGATIVE
2Na_2Cr_2O_7 + 8H_2SO_4 + 3CH_3CH_2OH \rightarrow 2Cr_2(SO_4)_3 + 2Na_2SO_4 + 3CH_3COOH + 11H_2O
Table of Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Name</th>
<th>Methanol</th>
<th>Acetone</th>
<th>Ethanol</th>
<th>Isopropanol</th>
<th>n-Propanol (IS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>primer</td>
<td>0.293</td>
<td>0.371</td>
<td>0.468</td>
<td>0.676</td>
<td>1.000</td>
</tr>
<tr>
<td>002</td>
<td>cal 2</td>
<td>0.293</td>
<td>0.371</td>
<td>0.468</td>
<td>0.676</td>
<td>1.000</td>
</tr>
<tr>
<td>003</td>
<td>cal 3</td>
<td>0.293</td>
<td>0.371</td>
<td>0.468</td>
<td>0.676</td>
<td>1.000</td>
</tr>
<tr>
<td>004</td>
<td>cal 4</td>
<td>0.293</td>
<td>0.371</td>
<td>0.468</td>
<td>0.676</td>
<td>1.000</td>
</tr>
<tr>
<td>005</td>
<td>cal 5</td>
<td>0.293</td>
<td>0.371</td>
<td>0.468</td>
<td>0.676</td>
<td>1.000</td>
</tr>
<tr>
<td>006</td>
<td>cal 6</td>
<td>0.293</td>
<td>0.371</td>
<td>0.468</td>
<td>0.676</td>
<td>1.000</td>
</tr>
<tr>
<td>007</td>
<td>cal 7</td>
<td>0.293</td>
<td>0.371</td>
<td>0.468</td>
<td>0.676</td>
<td>1.000</td>
</tr>
<tr>
<td>008</td>
<td>cal 8</td>
<td>0.293</td>
<td>0.371</td>
<td>0.468</td>
<td>0.676</td>
<td>1.000</td>
</tr>
<tr>
<td>009</td>
<td>re-chk 1</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.469</td>
<td>1.000</td>
</tr>
<tr>
<td>010</td>
<td>re chk 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>011</td>
<td>nerl 0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>012</td>
<td>nerl 0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>013</td>
<td>blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>014</td>
<td>blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>015</td>
<td>iam-1</td>
<td>0.293</td>
<td>0.371</td>
<td></td>
<td>0.677</td>
<td>1.000</td>
</tr>
<tr>
<td>016</td>
<td>iam-2</td>
<td>0.294</td>
<td>0.371</td>
<td></td>
<td>0.677</td>
<td>1.000</td>
</tr>
</tbody>
</table>

- **Methanol**: Concentration in G/100 dL
- **Acetone**: Concentration in G/100 dL
- **Ethanol**: Concentration in G/100 dL
- **Isopropanol**: Concentration in G/100 dL
- **n-Propanol (IS)**: Concentration in G/100 dL

WCMEO Postmortem Forensic Toxicology Laboratory
1300 East Warren Avenue
Detroit, MI 48207
WCMEO Volatiles Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Component Name</th>
<th>Time [min]</th>
<th>Rel. RT</th>
<th>Area [μV·s]</th>
<th>Adjusted Amount</th>
<th>ISTD Resp Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methanol</td>
<td>0.55</td>
<td>0.11</td>
<td>6415.23</td>
<td>0.0064</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Methanol</td>
<td>1.45</td>
<td>0.29</td>
<td>193742.00</td>
<td>0.1565</td>
<td>0.2793</td>
</tr>
<tr>
<td>3</td>
<td>Acetone</td>
<td>1.58</td>
<td>0.32</td>
<td>1626.13</td>
<td>0.0010</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Acetone</td>
<td>1.83</td>
<td>0.37</td>
<td>1802507.57</td>
<td>0.1575</td>
<td>2.5986</td>
</tr>
<tr>
<td>5</td>
<td>Ethanol</td>
<td>2.32</td>
<td>0.47</td>
<td>390008.72</td>
<td>0.1520</td>
<td>0.5823</td>
</tr>
<tr>
<td>6</td>
<td>Isopropanol</td>
<td>3.34</td>
<td>0.68</td>
<td>781129.61</td>
<td>0.1569</td>
<td>1.1261</td>
</tr>
<tr>
<td>7</td>
<td>n-Propanol (IS)</td>
<td>4.94</td>
<td>1.00</td>
<td>693637.05</td>
<td></td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Total: 3868466.32 0.6304 5.5663
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Name</th>
<th>Methanol</th>
<th>Acetone</th>
<th>Ethanol</th>
<th>Isopropanol</th>
<th>n-Propanol (IS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rel. RT</td>
<td>Conc. G/100 dL</td>
<td>Rel. RT</td>
<td>Conc. G/100 dL</td>
<td>Rel. RT</td>
</tr>
<tr>
<td>001</td>
<td>03-5836v1</td>
<td>0.371</td>
<td>8.7e-04</td>
<td>0.469</td>
<td>0.0146</td>
<td>1.000</td>
</tr>
<tr>
<td>002</td>
<td>03-5836v2</td>
<td>0.371</td>
<td>8.7e-04</td>
<td>0.469</td>
<td>0.0146</td>
<td>1.000</td>
</tr>
<tr>
<td>003</td>
<td>03-5885u1</td>
<td>0.371</td>
<td>5.3e-04</td>
<td>0.469</td>
<td>0.0250</td>
<td>1.000</td>
</tr>
<tr>
<td>004</td>
<td>03-5885u2</td>
<td>0.372</td>
<td>5.2e-04</td>
<td>0.469</td>
<td>0.0251</td>
<td>1.000</td>
</tr>
<tr>
<td>005</td>
<td>03-5885v1</td>
<td>0.372</td>
<td>6.6e-04</td>
<td>0.469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>03-5885v2</td>
<td>0.372</td>
<td>6.8e-04</td>
<td>0.469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>03-5900b1</td>
<td>0.372</td>
<td>0.0030</td>
<td>0.469</td>
<td>0.0827</td>
<td>1.000</td>
</tr>
<tr>
<td>008</td>
<td>03-5900b2</td>
<td>0.372</td>
<td>0.0030</td>
<td>0.469</td>
<td>0.0822</td>
<td>1.000</td>
</tr>
<tr>
<td>009</td>
<td>0.05 nerl</td>
<td></td>
<td>0.469</td>
<td>0.0504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>blk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>03-5900u1</td>
<td>0.372</td>
<td>0.0069</td>
<td>0.468</td>
<td>0.1468</td>
<td>1.000</td>
</tr>
<tr>
<td>012</td>
<td>03-5900u2</td>
<td>0.372</td>
<td>0.0072</td>
<td>0.469</td>
<td>0.1531</td>
<td>1.000</td>
</tr>
<tr>
<td>013</td>
<td>03-5900v1</td>
<td>0.372</td>
<td>0.0049</td>
<td>0.469</td>
<td>0.1184</td>
<td>1.000</td>
</tr>
<tr>
<td>014</td>
<td>03-5900v2</td>
<td>0.372</td>
<td>0.0049</td>
<td>0.468</td>
<td>0.1192</td>
<td>1.000</td>
</tr>
<tr>
<td>015</td>
<td>03-5939b1</td>
<td>0.318</td>
<td>0.0169</td>
<td>0.469</td>
<td>0.1132</td>
<td>1.000</td>
</tr>
<tr>
<td>016</td>
<td>03-5939b2</td>
<td>0.318</td>
<td>0.0170</td>
<td>0.469</td>
<td>0.1151</td>
<td>1.000</td>
</tr>
<tr>
<td>017</td>
<td>03-5939u1</td>
<td></td>
<td></td>
<td>0.469</td>
<td>0.1444</td>
<td>1.000</td>
</tr>
<tr>
<td>018</td>
<td>03-5939u2</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.1447</td>
<td>1.000</td>
</tr>
<tr>
<td>019</td>
<td>0.10 nerl</td>
<td></td>
<td>0.469</td>
<td>0.1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>blk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>03-5939v1</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.1290</td>
<td>1.000</td>
</tr>
<tr>
<td>022</td>
<td>03-5939v2</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.1261</td>
<td>1.000</td>
</tr>
<tr>
<td>023</td>
<td>03-5946i1</td>
<td>0.294</td>
<td>0.0197</td>
<td>0.468</td>
<td>0.1593</td>
<td>1.000</td>
</tr>
<tr>
<td>024</td>
<td>03-5946i2</td>
<td>0.294</td>
<td>0.0201</td>
<td>0.468</td>
<td>0.1582</td>
<td>1.000</td>
</tr>
<tr>
<td>025</td>
<td>03-5989b1</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.1917</td>
<td>1.000</td>
</tr>
<tr>
<td>026</td>
<td>03-5989b2</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.1950</td>
<td>1.000</td>
</tr>
<tr>
<td>027</td>
<td>03-5989v1</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.2001</td>
<td>1.000</td>
</tr>
<tr>
<td>028</td>
<td>03-5989v2</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.2001</td>
<td>1.000</td>
</tr>
<tr>
<td>029</td>
<td>0.20 nerl</td>
<td></td>
<td>0.468</td>
<td>0.0370</td>
<td>1.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>030</td>
<td>blk</td>
<td></td>
<td></td>
<td>0.469</td>
<td>0.0306</td>
<td>1.000</td>
</tr>
<tr>
<td>031</td>
<td>03-5998u1</td>
<td></td>
<td></td>
<td>0.469</td>
<td>0.0311</td>
<td>1.000</td>
</tr>
<tr>
<td>032</td>
<td>03-5998u2</td>
<td></td>
<td></td>
<td>0.469</td>
<td>0.0311</td>
<td>1.000</td>
</tr>
<tr>
<td>033</td>
<td>03-5998v1</td>
<td></td>
<td></td>
<td>0.469</td>
<td>0.0311</td>
<td>1.000</td>
</tr>
<tr>
<td>034</td>
<td>03-5998v2</td>
<td></td>
<td></td>
<td>0.469</td>
<td>0.0311</td>
<td>1.000</td>
</tr>
<tr>
<td>035</td>
<td>03-6032b1</td>
<td></td>
<td></td>
<td>0.468</td>
<td>0.1711</td>
<td>1.000</td>
</tr>
</tbody>
</table>
“Show me your tannins!”
SONOMA VALLEY HARVEST WINE AUCTION
August 28 – September 1, 2003 • Sonoma Valley Vintners & Growers Alliance
For reservations and information, call (707) 935-8803 or visit our website at www.sonomavalleywine.com