CLAN LAB METHODS

...COOKING WITH CHEMICALS FOR FUN AND PROFIT...
SOME FAVORITE RECIPES...
METHODS WE’LL COVER

- METHAMPHETAMINE
 - RED P
 - AMMONIA
 - P-2-P
- MDMA (Ecstasy)
- GHB
RED PHOSPHORUS METHOD

• RED PHOSPHORUS WITH IODINE

• NICKNAMES...
 – “RED P” METHOD
 – “HI” METHOD
 – “IODINE” METHOD
 – “RED & BLACK”
 – “MEXICAN NATIONAL” LAB
RED P METHOD
RED P METHOD

Red phosphorus can be purchased in bulk quantities and shipped in a variety of containers.
RED P METHOD

Red phosphorus can be purchased in bulk quantities and shipped in a variety of containers.
RED P METHOD

Red phosphorus can be purchased in bulk quantities and shipped in a variety of containers.
RED P METHOD

Striker plates are usually soaked in water or alcohol to remove the red phosphorus component. Usually 33%-65% of the striker plate surface.
RED P METHOD

Flares contain 30-40% red phosphorus on the striker plate (cap).
STEP 1 - TABLET EXTRACTION

- GRIND TABLETS
- PLACE IN CONTAINER
- ADD SOLVENT (Alcohol or water)
- SHAKE
- LET SIT
- SEPARATE LIQUID FROM BINDER USING FILTER PAPER
- USE BINDER AS CUT, USUALLY THROWN AWAY.
TABLET EXTRACTION

Large scale extraction of pseudoephedrine.
TABLET EXTRACTION

Coffee grinders are used to break down the tablets to extract the ephedrine or pseudoephedrine.
TABLET EXTRACTION

Mixers are used to break down the tablets to extract the ephedrine or pseudoephedrine.
TABLET EXTRACTION

• EXTRACT
 – EPHEDRINE
 – PSEUDEOEPHERINE
TABLET EXTRACTION

Pseudoephedrine products
• Tablets
• Caplets
• Pills
• Liquid
(Many gel caps are orange or green colored)
TABLET EXTRACTION - SOLVENTS

- **ALCOHOLS ARE EXCELLENT SOLVENTS FOR EXTRACTING EPHEDRINE**
 - “SELECTIVELY” EXTRACT FROM TABLETING
 - EVAPORATE QUICKLY
- **EXAMPLES**
 - DENATURED ALCOHOL
 - METHANOL
 - ISOPROPYL ALCOHOL
TABLET EXTRACTION

Lighter Fluid works, yet is a poor choice.

Alcohol is the common solvent used to extract pseudoephedrine.
TABLET EXTRACTION

Denatured alcohol is an excellent solvent, due to its rate of evaporation.
TABLET EXTRACTION - SOLVENTS

Mason Jars usually are the container of choice used to extract the ephedrine or pseudoephedrine from the binder.
TABLET EXTRACTION-SOLVENTS

Large-scale extraction of ephedrine or pseudoephedrine requires large-scale equipment.
TABLET EXTRACTION - SOLVENTS

Large-scale extraction of ephedrine or pseudoephedrine requires large-scale equipment.
TABLET EXTRACTION-
SOLVENTS

Hot plates are a typical method – used to evaporate alcohol from the dissolved ephedrine/pseudoephedrine.
TABLET EXTRACTION - SOLVENTS
Stoves can also be used to evaporate the solvent. This is not recommended by experienced cookers.
Mexican national organizations utilize large propane camp burners and pots for large-scale extraction.
TABLET EXTRACTION - SOLVENTS

Mexican national organizations utilize large propane camp burners and pots for large-scale extraction.
TABLET EXTRACTION - WATER

• WATER CAN BE USED
 – Pseudoephedrine Hydrochloride is water soluble
 – Since pseudoephedrine, Red phosphorus and Iodine are all Solid compounds, water is necessary for the reduction to occur. Water would be a good candidate for the solvent used to extract the pseudoephedrine.
TABLET EXTRACTION - WATER

Pseudoephedrine pills

TABLET EXTRACTION - WATER

Filter medium

funnel

Filter out Binder

Evaporate solvent
Scrape out pseudoephedrine
STEP 2 - COOKING

- COMBINE
 - PSEUDOEPHEDRINE
STEP 2 - COOKING

- COMBINE
 - PSEUDOEPHEDRINE
 - PHOSPHOROUS
STEP 2 - COOKING

- COMBINE
 - PSEUDOEPHEDRINE
 - PHOSPHOROUS
 - IODINE
STEP 2 - COOKING

- COMBINE
 - PSEUDOEPHEDRINE
 - PHOSPHOROUS
 - IODINE
- COOK (REFLUX)
 (amount of time depends on recipe.)
STEP 2 - COOKING

- COMBINE
 - PSEUDOEPHEDRINE
 - PHOSPHOROUS
 - IODINE

- COOK (REFLUX)
 (amount of time depends on recipe.)
STEP 2 - COOKING

• COMBINE
 – PSEUDOEPHEDRINE
 – PHOSPHOROUS
 – IODINE
• COOK (REFLUX)
• COOL
STEP 2 - COOKING

- COMBINE
 - PHOSPHOROUS
 - IODINE
 - PSEUDEPHEDRINE

- COOK (REFLUX)
- COOL
- SEPARATE LIQUID
 - STRONG ACID
STEP 2 - COOKING

- COMBINE
 - PHOSPHOROUS
 - IODINE
 - PSEUDOEPHEDRINE
- COOK (REFLUX)
- COOL
- SEPARATE LIQUID
 - STRONG ACID
- SAVE SLUDGE (RED-P)
STEP 2 - COOKING

SAVE SLUDGE
(RED-P)
COOKING

Red phosphorus usually will stain the reaction vessels.
COOKING
The iodine / hydriodic acid vapors are also found at the cook location.
COOKING
SUBSTITUTIONS

• RED PHOSPHORUS...
 – WHITE PHOSPHORUS
 – HYPOPHOSPHORUS ACID

• IODINE...
 – TINCTURE OF IODINE
 – HYDRIODIC ACID (IF AVAILABLE)
SUBSTITUTIONS

Iodine can be purchased in prill (small beads), flakes and BB size shot.
SUBSTITUTIONS

Iodine – very corrosive and toxic and suspect carcinogen.
SUBSTITUTIONS

Household Iodine tincture has 1-3% iodine dissolved in alcohol.
SUBSTITUTIONS

Veterinarian grade tincture is found in 7% to 15.5% solution.
SUBSTITUTIONS

Hydrogen peroxide is mixed with tincture of iodine to precipitate the iodine in 12-24 hours.
SUBSTITUTIONS

Iodine crystals that have been “crashed out” of the tincture utilizing hydrogen peroxide.
AFTER REFLUX TO SEPARATE THE REACTION MIXTURE

Filter out red phosphorous/iodine crystals

Filter medium

funnel

REDD P SLUDGE CAN BE REUSED

(Meth analyte in acid)
Funnels and filter paper is typically used to separate the red phosphorus after the reflux, from the water (acid) phase.
ALTERNATE METHOD TO SEPARATE REACTION

• Large labs have been known to use bed sheets and buckets.
STEP 3 - SEPARATION

• RAISE pH > 10-11
 – ADD SODIUM HYDROXIDE (LYE)

• OIL LAYER FORMS
 – METH BASE (meth oil)

• ADD ORGANIC SOLVENT (Coleman fuel or ether)

• SEPARATE LAYERS (Organic layer on top usually, water layer on bottom)
SEPARATION

Sodium hydroxide (lye) is used to raise the pH and separate the meth oil from the aqueous phase.
SEPARATION

Sodium hydroxide (lye) is used to raise the pH and separate the meth oil from the aqueous phase.
STEP 3 - SEPARATION

- RAISE pH > 10-11
 - ADD SODIUM HYDROXIDE (LYE)
- OIL LAYER FORMS
 - METH BASE (meth oil)
- ADD ORGANIC SOLVENT (Coleman fuel or ether)
- SEPARATE LAYERS (Organic layer on top, water layer on bottom)
SEPARATION

Ether is a common candidate for dissolving meth base (oil) prior to separating the oil and ether from the water phase.
SEPARATION

White gas (camp fuel) is the other most common solvent used to help extract the meth oil and separate from the water phase.
SEPARATION

White gas (camp fuel) is the other most common solvent used to help extract the meth oil and separate from the water phase.
METH SOLUBILITY

<table>
<thead>
<tr>
<th></th>
<th>METH BASE</th>
<th>METH HCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td>INSOLUBLE</td>
<td>SOLUBLE</td>
</tr>
<tr>
<td>SOLVENTS</td>
<td>SOLUBLE</td>
<td>INSOLUBLE</td>
</tr>
</tbody>
</table>
REVIEW - SEPARATION STEP

= METH

AMBER LIQUID

ADD NaOH (OIL FORMS)

ADD SOLVENT
SEPARATE LAYERS

• POUR THE LIQUIDS INTO A SEPARATORY FUNNEL
 – DRAINS FROM THE BOTTOM
ALTERNATE METHODS FOR SEPARATING LIQUIDS

• USE ANY CONTAINER WITH A SPIGOT

• WATER BOTTLES ARE ALSO VERY COMMON.
STEP 4 - SALTING OUT

• BUBBLE HYDROGEN CHLORIDE GAS THROUGH SOLVENT
• CRYSTALS FORM
 – METH HYDROCHLORIDE
STEP 4 - SALTING OUT

• BUBBLE HYDROGEN CHLORIDE GAS THROUGH SOLVENT

• CRYSTALS FORM
 – METH HYDROCHLORIDE
STEP 4 - SALTING OUT

• Separate through filter
SALTING OUT

HCL acid gas generators are typically plastic gas cans, or plastic soda bottles.
SALTING OUT

HCL acid gas generator may be a 1 liter soda bottle or similar vessel.
SALTING OUT

HCL acid gas generator may be a 1 liter soda bottle or similar vessel.
SALTING OUT

The tip of the tubing is an excellent place to typically find meth HCL product – notice the residue.
Large Mexican National Labs are great candidates for supers labs (10lbs/day) and are referred to as “Ranches.”
METHODS FOR SALTING OUT

• SULFURIC ACID + ROCK SALT
• MURIATIC ACID + ALUMINUM FOIL
METHODS FOR SALTING OUT

Sulfuric acid is the most common means of producing an HCL gas generator.
METHODS FOR SALTING OUT

Rock salt (NaCl) is commonly used in a gas generator with sulfuric acid (H$_2$SO$_4$) to produce HCL gas.
ALTERNATE RED P METHODS

- SPORTS BOTTLE COLD COOK
 - NO HEAT APPLIED
- EXPLOSIVE!!!
- POOR YIELD
- PHOSPHINE IS PRODUCED
ALTERNATE RED P METHODS

• SPORTS BOTTLE COLD COOK
 – NO HEAT APPLIED
• EXPLOSIVE!!!
• POOR YIELD
• PHOSPHINE IS PRODUCED
ALTERNATE RED P METHOD

• PRESSURE COOKER
 – JELLY JARS WITH CHEMICALS PLACED IN COOKER
 – HEAT
 – WHEN ALL BOTTLES HAVE EXPLODED - DONE!
ALTERNATE RED P METHOD

• PRESSURE COOKER
 – JELLY JARS WITH CHEMICALS PLACED IN COOKER
 – HEAT
 – WHEN ALL BOTTLES HAVE EXPLODED, DONE!
ANHYDROUS AMMONIA METHOD

- AMMONIA WITH LITHIUM OR SODIUM
- NICKNAMES...
 - “AMMONIA” METHOD
 - “NAZI” METHOD
 - “BIRCH” METHOD
 - “LITHIUM” METHOD
ANHYDROUS AMMONIA

ANHYDROUS
MEANS
WITHOUT WATER

= CONCENTRATED
FORM OF CHEMICAL
AMMONIA SOURCES

• COMPRESSED GAS CYLINDERS
• LIQUID AMMONIA FERTILIZER
• REFRIGERANT GAS
• AMMONIUM NITRATE/SULFATE
• AND LYE

• LOOK FOR
 – PROPANE TANKS
 ▪ CAN FAIL IN LESS THAN THREE WEEKS!!!
 – THERMOS JUGS
 – FIRE EXTINGUISHERS
AMMONIA SOURCES

Ammonia is often placed in propane cylinders for transport and storage.
AMMONIA SOURCES

Illegal anhydrous Ammonia tank
AMMONIA SOURCES

Anhydrous ammonia tanks vessels.
AMMONIA SOURCES

Replacement valves for ammonia tanks.
AMMONIA SOURCES

Lye can be mixed with ammonium nitrate and water to produce ammonia gas.
AMMONIA SOURCES

Lye can be mixed with ammonium sulfate or ammonium nitrate and water to produce ammonia gas.
LITHIUM & SODIUM

• HIGHLY WATER REACTIVE
• REACTIVE WITH MOISTURE IN AIR
• CHEMICAL SUPPLY
 – PACKED IN OIL OR MINERAL SPIRITS TO EXCLUDE AIR
 – WIRE OR SOLID CHunks
• GROCERY STORE
 – CAMERA BATTERIES - LITHIUM
 – CAN MAKE SODIUM FROM LYE/DRANO!!
LITHIUM & SODIUM

Lithium batteries are the most common reactive metal used in ammonia labs.
LITHIUM & SODIUM

Stripped lithium batteries are common wastes in the ammonia method of manufacturing meth.
LITHIUM & SODIUM

Lithium battery stripes will oxidize to a darker color if not placed in some type of mineral spirit before use.
SODIUM FROM LYE/DRANO

\[\text{NaOH} \rightarrow \text{Na}^+ \rightarrow \text{HEAT LYE} \rightarrow \text{LYE} \rightarrow \text{ELECTROPLATE METAL} \]

\[\text{NaOH} \rightarrow \text{OH}^- \rightarrow \text{BATTERY} \]
SODIUM FROM LYE/DRANO
SODIUM FROM LYE/DRANO
SODIUM FROM LYE/DRANO
STEP 1 - TABLET EXTRACTION

• SAME AS OTHER METHODS EXCEPT
 – WATER IS NOT AN OPTION!!
 – WATER REACTS WITH THE METALS
STEP 2 - REACTION

• TO A CONTAINER
 ADD
 – EPHEDRINE
 – ANHYDROUS AMMONIA
 – LITHIUM OR SODIUM METAL
 – MIX
STEP 2 - REACTION

- TO A CONTAINER
 ADD
 - EPHEDRINE
 - ANHYDROUS AMMONIA
 - LITHIUM OR SODIUM METAL
 - MIX
REACTION
Pseudoephedrine with lithium metal in Pyrex dish.
REACTION CONTINUED...

- ALLOW AMMONIA TO EVAPORATE
- ADD WATER
 - DECOMPOSE METAL...OUCH!!!
 - LET COOL
- OIL LAYER FORMS
 - METH BASE!
REACTION CONTINUED...

- ALLOW AMMONIA TO EVAPORATE
- ADD WATER
 - DECOMPOSE METAL...OUCH!!!
 - LET COOL
- OIL LAYER FORMS
 - METH BASE!
REACTION CONTINUED...

• ALLOW AMMONIA TO EVAPORATE
• ADD WATER
 – DECOMPOSE METAL...OUCH!!!
 – LET COOL
• OIL LAYER FORMS
 – METH BASE!
STEP 3 - SEPARATION

- ADD ORGANIC SOLVENT (Top Layers)
- SEPARATE THE LAYERS
STEP 3 - SEPARATION

- ADD ORGANIC SOLVENT (Top Layers)
- SEPARATE THE LAYERS
STEP 3 - SEPARATION

- ADD ORGANIC SOLVENT (Top Layers)
- SEPARATE THE LAYERS
STEP 4 - SALTING OUT

- BUBBLE HYDROGEN CHLORIDE GAS THROUGH SOLVENT
- METH PRECIPITATE FORMS
 - METH HCL
STEP 4 - SALTING OUT

- BUBBLE HYDROGEN CHLORIDE GAS THROUGH SOLVENT
- METH PRECIPITATE FORMS
 - METH HCL
SALTING OUT

Epsom salt (magnesium sulfate) is sometimes used as a drying agent to dry the “wet” HCL gas.
THIONYL CHLORIDE METHOD- HAZARDS ONLY

- PSEUDEEPHEDRINE IS PRECURSOR
- THIONYL CHLORIDE WITH CHLOROFORM
- NICKNAMED...
 - “HYDROGENATION” METHOD
 - “SHAKE-N-BAKE”
- REACTIVE CATALYSTS
 - RANEY NICKEL
 - PALLADIUM BLACK
THIONYL HAZARDS

• THIONYL CHLORIDE
 – WATER REACTIVE- FORMS HYDROCHLORIC AND SULFURIC ACIDS

• HYDROGEN GAS
 – PRESSURE
 – FLAMMABLE

• CATALYST
 – WATER REACTIVE

• CHLOROFORM
 – SUSPECTED CARCINOGEN
HYDROGENATION

HYDROGENATOR
PRESSURE VESSEL

PRESSURE GAUGE

HYDROGEN FILL HOSE

HYDROGEN GAS

SHAKE
PRESSURIZE
REPEAT

WASTE
CATALYST
SLUDGE

METH in
ALCOHOL
HOMEMADE HYDROGENATOR
HOMEMADE HYDROGENATOR
HOMEMADE HYDROGENATOR
PHENYL-2-PROPANONE MANUFACTURE

- BENZYL CHLORIDE TO BENZYL CYANIDE
- BENZYL CYANIDE TO PAA
- PAA TO P2P
PHENYL-2-PROPANONE METHOD

• PHENYL-2-PROPANONE (P-2-P) WITH METHYLAMINE AND ALUMINUM FOIL

• NICKNAMED...
 – P-2-P METHOD
 – FOIL METHOD
 – “BIKER” METHOD
 – “PROP DOPE” METHOD
FOIL PREPARATION

– COOKERS WILL OFTEN...

• WASH FOIL IN SODIUM HYDROXIDE
 ▪ RED DEVIL LYE
 ▪ DRANO CRYSTALS
• SHRED FOIL
 ▪ INCREASES SURFACE AREA OF FOIL
P-2-P REACTION

• REACTION IS SLIGHTLY EXOTHERMIC

• REACTION OCCURS ON FOIL SURFACE
 – FOIL “CONSUMED IN REACTION”
 – GREY SLUDGE AT BOTTOM OF FLASK
STEP 1 - REACTION

- COMBINE
 - P-2-P
 - METHYLAMINE
 - MERCURIC CHLORIDE
 - ALCOHOL
 - ALUMINUM FOIL
- ALLOW TO REACT
- LET COOL
STEP 2 - SEPARATION

- OIL LAYER FORMS - METH BASE
- FILTER REACTION TO REMOVE GREY SLUDGE (ALUMINUM)
- ADD ORGANIC SOLVENT
- SEPARATE SOLVENT LAYER
STEP 3 - SALTING OUT

• BUBBLE HYDROGEN CHLORIDE GAS THROUGH SOLVENT

• CRYSTALS FORM
 – METH HYDROCHLORIDE
HAZARD COMPARISON

<table>
<thead>
<tr>
<th>METHOD</th>
<th>HAZARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED PHOSPHOROUS</td>
<td>PHOSPHINE GAS</td>
</tr>
<tr>
<td></td>
<td>IODINE</td>
</tr>
<tr>
<td></td>
<td>IRRITANT/FLAM GAS</td>
</tr>
<tr>
<td>AMMONIA</td>
<td>WATER RX METALS</td>
</tr>
<tr>
<td>THIONYL CHLORIDE</td>
<td>ACID GASES</td>
</tr>
<tr>
<td>P-2-P</td>
<td>CARCINOGEN</td>
</tr>
<tr>
<td></td>
<td>IRRITANT/FLAM GAS</td>
</tr>
<tr>
<td></td>
<td>CNS TOXICANT</td>
</tr>
</tbody>
</table>
PRODUCTION COMPARISON

<table>
<thead>
<tr>
<th>METHOD</th>
<th>TIME / YIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED PHOSPHOROUS</td>
<td>1 - 1 1/2 DAYS</td>
</tr>
<tr>
<td></td>
<td>60 - 85 %</td>
</tr>
<tr>
<td>AMMONIA</td>
<td>1 - 2 HOURS</td>
</tr>
<tr>
<td></td>
<td>95 PLUS %</td>
</tr>
<tr>
<td>THIONYL CHLORIDE</td>
<td>2 - 2 1/2 DAYS</td>
</tr>
<tr>
<td></td>
<td>90 - 95 %</td>
</tr>
<tr>
<td>P-2-P</td>
<td>1 - 1 1/2 DAYS</td>
</tr>
<tr>
<td></td>
<td>60 - 85 %</td>
</tr>
</tbody>
</table>
Begin with Safrole

- Sassafras oil contains 80% safrole.
- 1998 DEA placed sassafras oil on watched list.
- Sassafras tree grows naturally in the south, southeast, eastern seaboard, and in the Appalachian Mountain regions.
Ecstasy
Components of Sassafras Oil

<table>
<thead>
<tr>
<th>Component</th>
<th>% Composition</th>
<th>BP @ 1atm (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinene</td>
<td>2 – 10%</td>
<td>154</td>
</tr>
<tr>
<td>Phelladrene</td>
<td>2 – 10%</td>
<td>175</td>
</tr>
<tr>
<td>D-Camphor</td>
<td>0 – 5%</td>
<td>204</td>
</tr>
<tr>
<td>Safrole</td>
<td>80 – 90%</td>
<td>234</td>
</tr>
<tr>
<td>Eugenol</td>
<td>0 – 10 %</td>
<td>252</td>
</tr>
</tbody>
</table>
Separate Safrole Oil

- Easiest method:
 1. Wash sassafras oil with 28% acetic acid to remove eugenol, pinene, and camphor oils.
 2. Wash remaining oil with water to remove other contaminants.
 3. Wash oil with denatured alcohol to dissolve safrole (leaving phelladrene behind).
 4. Heat denatured alcohol until alcohol has evaporated leaving safrole behind.
Safrole to Isosafrole

- Combine
 - Safrole oil
 - Sodium or potassium hydroxide
 - Denatured alcohol
 - Reflux at 120 – 140 °C for 12 – 24 hours
 - Dark colored mixture is isosafrole
MDP-2-P Production

1. Place a large flask or container with 30% hydrogen peroxide and 88% formic acid in an ice bath.

2. Combine isosafrole and acetone in a separatory funnel.

3. Slowly add the isosafrole/acetone solution drop wise to the chilled hydrogen peroxide/formic acid solution. Ensure temperature stays below 20 °C. Solution will turn from yellow to orange.

4. Let solution sit and warm to room temperature. Solution will turn to dark red.
5. Distill or allow acetone and formic acid to evaporate. A thick black liquid should remain.

6. Add methanol and 15% sulfuric acid to the thick black liquid and reflux for three hours.

7. Allow liquid to cool (oil layer will develop on bottom of container) and add an organic solvent.

8. Transfer organic solvent to another container and wash solvent with 5% sodium hydroxide to neutralize any formic acid still left.

9. Evaporate organic solvent. Remaining oil is MDP-2-P.
MDMA (ECSTASY) MANUFACTURING

- MULTIPLE ROUTES POSSIBLE USING MDP-2-P
- COMMON ROUTE FOLLOWS “P-2-P/ METHYLAMINE” PROCEDURE
 - USES SAME CHEMICALS
 - FOLLOWS SAME STEPS
STEP ONE - REACTION

- COMBINE THE FOLLOWING
 - MDP-2-P
 - METHYLAMINE
 - MERCURIC CHLORIDE
 - ALCOHOL
 - FOIL

- LET REACT TO COMPLETION
 - EXOTHERMIC
STEP 2 - SEPARATION

• WHEN REACTION IS COMPLETE
 – OIL LAYER FORMS - MDMA BASE
• FILTER REACTION TO REMOVE GREY SLUDGE (ALUMINUM)
• ADD ORGANIC SOLVENT
• SEPARATE SOLVENT LAYER
• MDMA OIL IS IN SOLVENT LAYER
STEP 3 - SALTING OUT

- BUBBLE HYDROGEN CHLORIDE GAS THROUGH SOLVENT
- CRYSTALS FORM
 - MDMA HYDROCHLORIDE
GHB MANUFACTURING

- GAMMA HYDROXYBUTYRATE
- ONE STEP REACTION
 - COMBINE GAMMABUTYROLACTONE (GBL) WITH LYE
 - HEAT
GHB MANUFACTURING

Butyrolactone is the common precursor for GHB.
GHB MANUFACTURING

Baking soda is a buffered base that can be used to convert GBL to GHB
GHB ALTERNATIVES

• USERS DISCOVERED:
 – DON’T NEED TO MAKE GHB, JUST INGEST GBL
 • BODY CONVERTS INTO GHB
 – CAN ALSO INGEST 1,4-BUTANEDIOL
 • BODY CONVERTS INTO GHB
 – SAME PATHWAY AS ALCOHOL DEHYDROGENASE
GHB ALTERNATIVES

Nutrition Facts
Serving Size: 1 fl oz
Servings Per Container: 32

*1,4 Butanediol
Potassium
Vitamin C

*No US Recommended Daily Allowance Established
GHB ALTERNATIVES
CONVERSIONS

• 1 GRAM = 1000mg

• 3.5 GRAMS = 1/8th OUNCE (EIGHTBALL)

• 14 GRAMS = ½ OUNCE

• 28 GRAMS = 1 OUNCE

• 454 GRAMS = 1 POUND
CLAN LAB METHODS

...WHAT WILL THEY THINK OF NEXT?...